Обучение длится 6 модулей
Автор: Валерий Бабушкин
Уровень подготовки: начальный
Симулятор Machine Learning Engineer

Работа над реальными задачами под руководством ведущих ML-специалистов.

На симуляторе вы получите доступ к инфраструктуре и задачам разного уровня, которые подготовили ML-инженеры с опытом работы в ритейле, e-commerce и BigTech-компаниях.

Здесь вас ждёт практика на задачах, максимально приближенных к реальным, и в окружении, максимально похожем на рабочее. Вы сможете начать с комфортного для вас уровня сложности и повышать его по мере развития ваших навыков. Закрепив знания на кейсах из индустрии, вы подготовите себя к решению аналогичных задач на работе.

ЗАДАЧИ, КОТОРЫЕ БУДЕМ РЕШАТЬ:

1. ЭМБЕДДИНГИ ТОВАРОВ
ML-команде маркетплейса потребовались векторные представления товаров, учитывающие паттерны поведения пользователей. Постройте эмбеддинги на основе истории покупок, используя любой подходящий метод.

2. ПОСТПРОЦЕССИНГ ПРЕДСКАЗАНИЙ
Модель динамического ценообразования выдала рекомендованные цены. Убедитесь, что они соответствуют бизнес-логике: не превышают цены конкурентов и не приводят к сверхпродажам и дефициту товаров на складе. Найдите способ скорректировать цены за минимальное число правок цены.

3. А/В-ТЕСТИРОВАНИЕ
Дизайнеры внесли изменения в интерфейс сайта. Аналитик провёл A/B-тест и не обнаружил статистически значимого изменения конверсии. Проверьте, верны ли его расчёты, и попробуйте провести тест другим способом.

4. ПРИБЛИЖЕННЫЙ ПОИСК БЛИЖАЙШИХ СОСЕДЕЙ
ML-инженер из другого отдела построил экспериментальную ML-модель в Jupyter-ноутбуке. Бизнес-заказчику понравились результаты работы модели, и вас попросили упаковать её в продукт. Перенесите код из Jupyter в модули библиотеки, покройте модель тестами, зафиксируйте зависимости, упакуйте всё в Docker и настройте автоматический пересчёт предсказаний по расписанию.

5. ДЕПЛОЙ МОДЕЛИ
Мы обучили модель, которая на основе картинки и названия товара генерирует эмбеддинги. Но мы не можем с её помощью искать дубликаты среди миллионов товаров — сложность квадратичная. Попробуйте какой-нибудь другой способ и предложите своё решение.

6. УВЕРЕННОСТЬ МОДЕЛИ
Вы обучили модель, прогнозирующую отток пользователей, и получили ROC-AUC, равный 0.89. Ваш руководитель просит уточнить, какой доверительный интервал у этой оценки и на каких новых клиентах модель уверена в своём предсказании лучше, а на каких — хуже.

Дата последнего обновления: 26 января 2023

Темы

Другие курсы

-43%
Инженер по тестированию
Инженер по тестированию
Авторы: Группа авторов
Подробнее
98 600
173 000
2 883
/мес
Kotlin Multiplatform шаг за шагом
Kotlin Multiplatform шаг за шагом
Автор: Максим Казанцев
Подробнее
9 500
Тестирование GraphQL API
Тестирование GraphQL API
Автор: Ольга Назина
Подробнее
7 000
Charles Proxy как инструмент тестировщика
Charles Proxy как инструмент тестировщика
Автор: Ольга Назина
Подробнее
5 500
Python. Микросервисы. Backend на FastAPI
Python. Микросервисы. Backend на FastAPI
Автор: Саид Магомедов
Подробнее
5 890
1 473
/мес
JavaScript: от теории к практике
JavaScript: от теории к практике
Автор: Мария Ажгихина
Подробнее
3 200
Web-технологии: практический курс CSS
Web-технологии: практический курс CSS
Автор: Мария Ажгихина
Подробнее
1 699
Фронтенд-разработчик
Фронтенд-разработчик
Авторы: Группа авторов
Аналитик 1С. Основные инструменты и ввод в профессию
Аналитик 1С. Основные инструменты и ввод в профессию
Автор: Василий Еремин
Подробнее
1 490
Назад
Смотреть дальше